New Sounds Montreal, Canada, 17-19 May 2013

Phonological Attention Control, Inhibition, and Second Language Speech Learning

Isabelle Darcy, Joan Carles Mora, Danielle Daidone

Indiana University & University of Barcelona

Factors affecting L2 phonological acquisition

Learning conditions:

- L1 background (e.g. Flege, Bohn, & Jang, 1997)
- Age and length of L2 exposure (e.g. Flege, Yeni-Komshian, & Liu, 1999; Johnson & Newport, 1989)
- Frequency or amount of L1/L2 use (e.g. Guion et al., 2000)
- → when controlled, individual differences remain in L2 phonological development (e.g. Pallier et al., 1997)

Cognitive abilities:

- Working memory (e.g. Papagno & Vallar, 1995; MacKay, Meador, & Flege, 2001; Cerviño-Povedano & Mora, 2011; Service, 1992; Masoura & Gathercole, 1999)
- Attention control (Guion & Pedersen, 2007; Segalowitz & Frenkiel-Fishman, 1997)
- Inhibition (Lev-Ari & Peperkamp 2012)
- Lexical retrieval (Segalowitz, 1997) and vocabulary size (Bundgaard-Nielsen, Best, & Tyler, 2011)
- → Not well known: how these factors relate to L2 phonological development in perception and production

Possible candidates

- Phonological attention control (AC)
 - the ability to flexibly and efficiently shift attention between linguistic dimensions (Segalowitz & Frenkiel-Fishman, 2005)
 - For L2 phonology : more efficient AC may enhance the processing of acoustic-phonetic information in the input and lead to higher performance in L2 speech perception/production (Safronova & Mora, 2012; Mora & Gilabert, 2012)
- Inhibition skill
 - Stronger inhibitory skill might result in better inhibition of the first language when using the L2, and to more efficient phonological processing when switching between languages (Lev-Ari & Peperkamp, 2012)

In addition

- Vocabulary size
 - Good measure of overall proficiency
 - A larger vocabulary facilitates phonological inference in L1 acquisition (Munson et al., 2005)
 - In L2, it may also be related to phonological competence (vowel perception: Bundgaard-Nielsen, Best, & Tyler, 2011)

=> we use vocabulary size as a (phonologically related) measure of proficiency, and include it as a covariate in analyses

Production: results

Perception

Spanish

Speeded categorial ABX task

Trisyllabic nonword stimuli

Stimulus language	item A	item B	Condition	
	sa' r eβo	saˈ <mark>ð</mark> eβo	Test C	
English	səˈ∫i:dən	səˈ <mark>t∫</mark> i:dən	Test C	
	fa'n <mark>e</mark> ða	fa'n <mark>e</mark> ıða	Test V	
English	fəˈn <mark>i:</mark> dı∫	fəˈnɪdı∫	Test V	
	ga' <mark>t</mark> aso	ga'ðaso	Control C	
English	gəˈ <mark>t</mark> æfın	gəˈ <mark>d</mark> æfın	Control C	
	lu'pito	lu'p <mark>a</mark> to	Control V	
English	ləˈpi:dık	ləˈp <mark>æ</mark> dık	Control V	

Cognitive and proficiency measures

- Attention Control
- Inhibition
- Vocabulary size

Attention Control

- New task
- Auditory analog of the Dimensional Change Card Sort Task (Bialystok & Martin 2004)
- Switch-Repeat Alternation (Segalowitz & Frenkiel-Fishman, 2005)
- Participants must switch attention between acoustic dimensions: Nasality vs. Native language
- These two dimensions can be used for both groups equally
- Two native bilinguals (Sp./ Am.Eng) recorded both sets of stimuli

Vocabulary size (receptive)

Correlations

X-Lex/Y-Lex Test

(Meara & Miralpeix, 2006)

- For L2 learners
- See a printed word and decide if it is known or not
- Various frequency bands
- X-Lex = 5000 most frequent
- Y-Lex = 10,000 most freq.
- For L2 Spanish, only X-Lex available

Peabody Picture Vocabulary Test

(PPVT, Dunn & Dunn, 2007)

- For native speakers, children and adults
- Hear a spoken word and choose one out of four pictures
- Items arranged from "easiest" to "hardest" (but: for native speakers)
- For L2 English: PPVT 4
 - (British or American English versions)
- For L2 Spanish: PPVT 3
 - (Peninsular or Latin Am. Spanish versions)

Vocabulary size: rationale

- X-Lex / Y-lex is a great measure of vocabulary size, but for L2 Spanish, only X-lex available
- So we decided to use PPVT as well because both Spanish and English versions were available
- However : PPVT was developed for L1
 - Need to make sure that the PPVT scores (error rate) and Xlex/Y-lex scores are correlated, before using PPVT as valid vocabulary size measure for the two groups.
- Results: X-lex/Y-lex scores significantly correlate with PPVT for the Spanish L1 group (for whom we have that score): r = -.633, p < .01

Data

- Only participants with valid data in all tasks are selected for this analysis (82 → 40)
 - Audiometry (- n = 18)
 - Background questionnaire (- n = 15)
 - speech pathology, bilingual or fluent in another language using our test contrasts (e.g. Italian), not English or Spanish native speaker, use L2 too early ...
 - Attention Control (- n = 3)
 - Inhibition (- n = 2)
 - ABX (- n = 4)
- Total of 40 participants : 16 L2-English + 18 L2-Spanish + 6 Native speakers

P

L2 learners

	L2	N	Mean	(SD)	t	df	р
Age (years)	English	16	23.3	5.38	2.77	15.4	.014
	Spanish	18	19.6	0.70			
Motivation	English	16	6.0	0.71	2.11	23.3	040
	Spanish	18	5.6	0.41			.046
Current L2 use	English	16	17.4	5.93	3.7	32	.001
	Spanish	18	9.1	7.06			
Self-evaluation (1-5)	English	16	4.0	0.37	.67	28.9	.506
	Spanish	18	3.9	0.58			
LoR abroad (weeks)	English	16	5.4	10.1	11	32	.911
	Spanish	18	5.9	15.2			
Years of study	English	16	11.9	2.77	3.21	32	.003
	Spanish	18	8.8	2.94			
First Exposure (age)	English	16	7.6	2.13	-1.15	26.2	.259
	Spanish	18	8.8	4.09			
First Use (age)	English	16	13.5	4.40	2.29	32	.029
	Spanich	18	10.2	3.96			

Compared to the learners in Seville (L2 English), learners in Bloomington (L2 Spanish) are younger, less motivated, speak the L2 less, have studied for less time, and started using Spanish earlier.

郡

Take-home message

- Inhibition and attention control are associated with L2 processing of consonants and vowels, when proficiency is partialled out
- Perception
 - Learners with higher inhibitory skill are perhaps able to deactivate (or inhibit) the language not in use more efficiently, and this might help them obtain higher accuracy scores in our categorial ABX task
 - Attention control is also associated with more accurate performance in ABX (for the L2 English learners), but less strongly than inhibition
- Production
 - Inhibition is not related to production scores
 - Attention control is related to consonant production for L2 English learners
- Next step will examine whether such an advantage in speech processing is the result of more efficient executive function
- A stronger Inhibition and more efficient Attention control might be facilitating phonological *learning*

Thank you!

- Shiri Lev Ari, Sharon Peperkamp (LSCP, Paris)
- Paola Rodrigues, Tanya Flores, Diana Arroyo, Ana Fernandez, Maggie Peters, Fiona Pannatt
- Amanda Rabideau (Univ. of Utah)
- Elena Safronova (Barcelona)
- Eva Cerviño-Povedano (Barcelona)
 Marina Barrio Parra, M. Heliodora Cuenca Villarín (Sevilla)
- Ron Roosevelt (Sevilla)

- Carmen Muñoz (Barcelona)
 - Kathleen Bardovi-Harlig (Bloomington)
- SLPL lab members (Bloomington)
 - Jeffrey Holliday (Bloomington)
- Grant support :
 - Grant-in-Aid, Indiana University Bloomington
 Grants HUM2007-64302 (Ministerio de Ciencia e
 - Innovación) and 2009SGR137 (Generalitat de Catalunya)

Comments/questions: idarcy@indiana.edu ddaidone@indiana.edu

mora@ub.edu

References

- Anderson, M. C., Bjork, R. A., & Bjork, E. L. (1994). Remembering can cause forgetting: retrieval dynamics in long-term memory. *Journal of experimental psychology. Learning, memory, and cognition, 20, 1063-1087.*
- Atkins, P. W. B., & Baddeley, A. D. (1998). Working memory and distributed vocabulary learning. Applied Psycholinguistics, 19, 537-552.
- Bialystok, E., & Martin, M. M. (2004). Attention and inhibition in bilingual children: evidence from the dimensional change card sort task. *Developmental Science*, 7, 325-339.
- Bundgaard-Nielsen, R. L., Best, C. T., & Tyler, M. D. (2011). Vocabulary Size Matters: The Assimilation of Second-Language Australian English Vowels to First-Language Japanese Vowel Categories. *Applied Psycholinguistics*, 32, 51-67.
- Cerviño-Povedano, E., & Mora, Joan C. (2011). Investigating Catalan learners of English over-reliance on duration: vowel cue weighting and phonological short-term memory. In K. Dziubalska-Kołaczyk, M. Wrembel & M. Kul (Eds.), Achievements and perspectives in the acquisition of second language speech: New Sounds 2010 (Vol. 1, pp. 53-64). Frankfurt am Main: Peter Lang.
- Flege, J. E., Bohn, O.-S., & Jang, S. (1997). Effects of experience on non-native speakers' production and perception of English vowels. *Journal of Phonetics*, 25, 437-470.
- Flege, J. E., Yeni-Komshian, G. H., & Liu, S. (1999). Age constraints on second-language acquisition. Journal of Memory and Language, 41, 78-104.
- Guion, S. G., Flege, J. E., & Loftin, J. D. (2000). The effect of L1 use on pronunciation in Quichua-Spanish bilinguals. *Journal of Phonetics*, 28, 27-42.
- Guion, S.G. & Pederson, E. (2007). Investigating the role of attention in phonetic learning. In O.-S. Bohn & M. Munro (Eds.) Language Experience in Second Language Speech Learning. Amsterdam: John Benjamins, 57-77.

References

Johnson, J. S., & Newport, E. L. (1989). Critical Period Effects in Second Language Learning: The Influence of Maturational State on the Acquisition of English as a Second Language. *Cognitive Psychology*, 21, 60-99.

Lev-Ari, S. & Peperkamp, S. (2012) Inhibitory skill influences late bilinguals' VOT in their native language. Poster presented at the 13th Conference on Laboratory Phonology, Stuttgart, Germany.

- Masoura, E. V., & Gathercole, S. E. (1999). Phonological Short-term Memory and Foreign Language Learning. International Journal of Psychology, 34, 383-388.
- Mora, J. C. & Gilabert, R. (2012). Individual factors in utterance and perceived fluency: some empirical issues. Invited paper presented at the Workshop Fluent Speech, Utrecht University, The Netherlands, 12-13 November 2012.
- Munson, B., Kurtz, Beth A., & Windsor, J. (2005). The Influence of Vocabulary Size, Phonotactic Probability, and Wordlikeness on Nonword Repetitions of Children With and Without Specific Language Impairment. Journal of Speech, Language and Hearing Research, 48, 1033-1047
- Pallier, C., Bosch, L., & Sebastian-Gallés, N. (1997). A limit on behavioral plasticity in speech perception. Cognition, 64, B9-B17.
- Papagno, C., & Vallar, G. (1995). Verbal short-term memory and vocabulary learning in polyglots. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 48, 98-107.
- Segalowitz, N. (1997). Individual differences in second language acquisition. In A. de Groot & J. F. Kroll (Eds.), *Tutorials in bilingualism* (pp. 85-112). Hillsdale, NJ: Lawrence Erlbaum Associates.
- Segalowitz, N. and Frenkiel-Fishman, S. (2005) Attention control and ability level in a complex cognitive skill: attention-shifting and second language proficiency. *Memory and Cognition*, 33, 644-653.
- Service, Elisabet. (1992). Phonology, working memory, and foreign-language learning. The Quarterly Journal of Experimental Psychology. A. Human experimental psychology, 45A, 21-50.

P